ISES Solar Charging Station

Ze Chen, Tyler Faulkner, Alexa Kearns, Yaqoub Molany, Thomas Penner

October 9, 2013

Overview

- Introduction
- Goals and needs
- Objectives
- Operating Environment
- Constraints
- QFD
- House of Quality
- Gantt Chart
- Conclusion

Introduction

- The Institute for Sustainable Energy Solutions (ISES)
- Premier research division that works on renewable energy
- ISES has in its possession multiple solar photovoltaic modules

Client Information

- Sponsored by Dr. Thomas Acker
- Northern Arizona University Professor
- Research Interests
 - Renewable energy systems
 - Thermal-fluid system analysis
- Professional activities
 - Director of NAU Sustainable Energy Solutions
 - Reviewer of ASME Journal of Solar Energy

The Need

• Northern Arizona University currently does not have a place that uses a sustainable, renewable energy source, that students and faculty could use in order to charge small electronic devices.

Ze Chen

Goal

• Design a solar charging station capable of providing enough power to charge small electronic devices.

Figure 1: Solar charging station by Samuel Monger

Objectives

Table 1: Primary project objectives with measurement basis

Objective	Measurement Basis	Units
Charge Small Devices	Total power output	kW
Inexpensive	Cost of the system	\$
Educational	A digital readout to inform users of power output	kW
Asthetically pleasing	Survey students and faculty in order to choose the most pleasing design	# of votes
Grid Connection	Energy output to determine the amount going into the grid	kWhr
Withstand Environment	Determine the total stress experienced by the system	kPa/psi

Operating Environment

- Target Location: W.A. Franke College of Business (Patio), NAU.
- Mostly sunny throughout the day
- Able to withstand:
 - Rain
 - Snow
 - Hail
 - High Winds

Constraints

- Building Codes
- Electrical Codes
- Number of usable solar panels
- Weather conditions

QFD

		Engineering Requirements					
		Power	Energy	Stress	Cost	Yield Strength	Weight
Customer Requirements	Aesthetically Pleasing				Х		
	Educational	Х	х		х		
	Withstand Environment	Х	х		х		х
	Charge small devices	Х	х				
	Safety			х	х	х	х
	Snow removal				х		
	Inexpensive				Х		
Units		kW	kWhr	kPa	\$	kPa	N
	ָה	3	36	X	1000	х	х

Figure 2: Quality Function Deployment Diagram

House of Quality

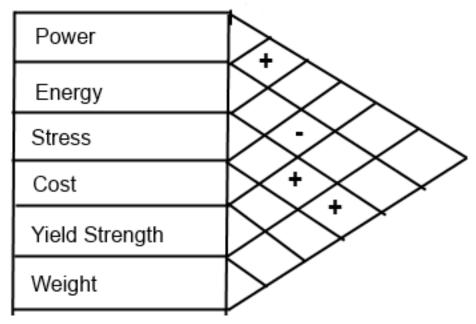


Figure 3: House of Quality

Gantt Chart

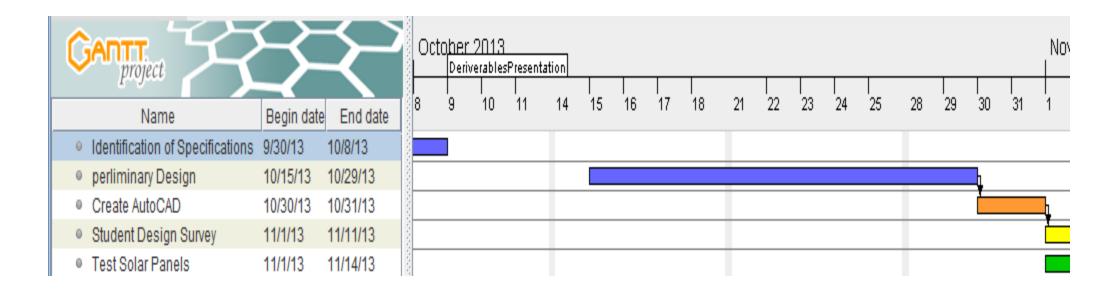


Figure 3: October Tasks

Alexa Kearns 11

Gantt Chart

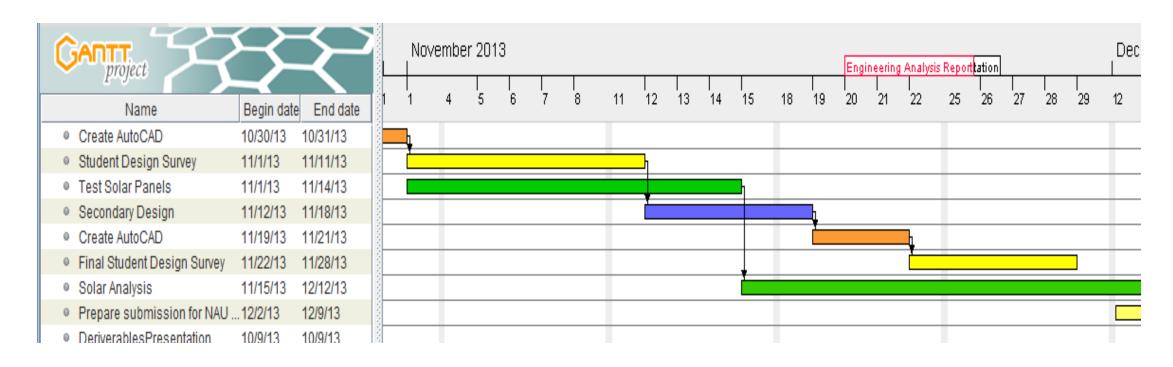


Figure 4: November Tasks

Alexa Kearns 12

Gantt Chart

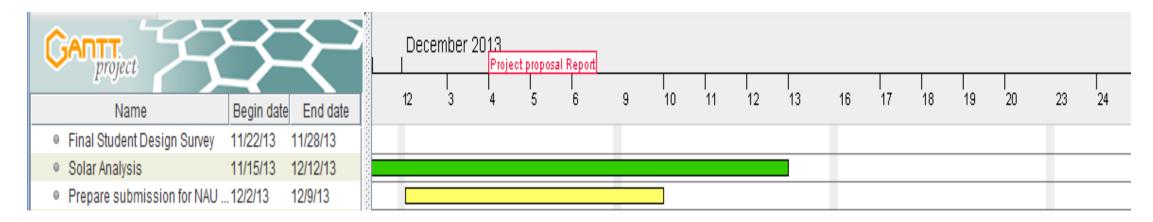


Figure 5: December Tasks

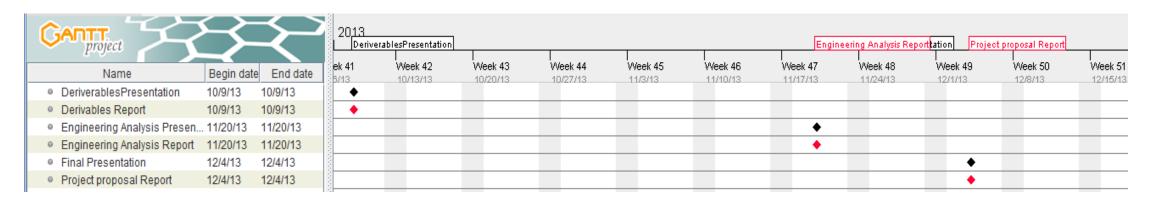


Figure 6: Milestones

Alexa Kearns 13

Conclusion

 The client is Dr. Thomas Acker, director of the Sustainable Energy Solutions Group at NAU.

 The need is recognized for a solar charging station capable of powering small electronic devices.

 A QFD and House of Quality were used to determine the most important aspects of the design.

References

• http://nau.edu/CEFNS/Engineering/Mechanical/Faculty-Staff/Thomas-Acker/

Questions?